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INTRODUCTION

The human microbiome refers to the communities of microorganisms living

in association with our bodies. These topographically diverse and temporally

complex microbial populations are largely commensal, providing us with

genetic variation and gene functions that human cells have not had to evolve

on their own. Development of culture-independent isolation techniques and

next-generation DNA sequencing technologies has enabled high-throughput

surveys of human microbiota. These studies have linked alterations of both

microbial community composition and diversity to various disease states.

Although the microbiome has been shown to play an important role in shap-

ing the host immune response, influencing metabolism, and modulating drug

interactions, many important questions must be answered before we can fully

utilize its prognostic and predictive potential. This chapter highlights the

progress of the genomic technologies that drive microbiome research, exam-

ines how the microbiome modulates health and contributes to disease, and

discusses the future challenges facing this emerging field of study.

16S RIBOSOMAL RNA GENE SEQUENCING

In the late 1800s, Robert Koch developed techniques to cultivate and isolate

bacteria cells, which were then identified and characterized by biochemical
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staining, microscopic observation of their morphology, and the use of enrich-

ment cultures. For over a hundred years, these culture-based techniques were

the gold standard for classifying microbes. However, these approaches are

restricted to the small subset of microbes that are able to survive in isolation

and under specific laboratory conditions.

Genomic classification approaches offered a solution to biases of culture-

based practices. In the late 1970s, Carl Woese and colleagues [1] generated

the first bacterial phylogeny based on the small subunit 16S ribosomal RNA

(rRNA). Unique to prokaryotic organisms, the 16S rRNA gene is highly con-

served, but contains nine hypervariable regions with species-specific signa-

tures. Soon after bacterial phylogeny was established, Norman Pace and

colleagues [2] developed a technique to isolate the 16S rRNA gene from

genomic DNA using PCR amplification. Sequences of the 16S rRNA gene

could then be compared to the phylogenetic “reference” tree for taxonomic

classification. While the 16S rRNA gene is ideal for profiling bacteria, the

18S rRNA and internal transcribed spacer (ITS) regions are similarly used to

classify fungal species.

Standard human microbiome studies involve the extraction and sequenc-

ing of DNA from a sample containing a heterogeneous mixture of

microbes, followed by computational analysis to examine those populations

(Fig. 4.1). Rapid advances in DNA sequencing technology have been a key

impetus for culture-independent microbiome studies. Early human micro-

bial surveys relied upon fingerprinting techniques or Sanger sequencing of

the amplified and cloned 16S rRNA gene. Today, next-generation sequenc-

ing platforms offer faster sequencing and vastly increased sampling depths

at much lower costs.

The type of sequencing platform used is ultimately determined by the

question being asked. In general, shorter reads are sufficient for most micro-

bial community characterization studies, but decrease taxonomic precision.

Longer read lengths are beneficial for studies attempting to distinguish

between strains or species. Paired-end sequencing is often used to mitigate

the problems associated with shorter read lengths by sequencing reads bi-

directionally and merging the resulting pairs into a single, longer read.

Upon its introduction, many researchers in the field relied upon the

Roche/454 pyrosequencing platform, which produced reads approximately

400�500 bp long. Currently, the Illumina MiSeq benchtop sequencer, which

produces reads up to 300 bp, is a popular tool used in 16S rRNA characteri-

zation studies. A single run on a MiSeq can generate up to 50 million

paired-end 300 bp reads in less than three days. Hundreds of samples can be

sequenced on a single run by incorporating sample-specific barcodes into the

5ʹ primer sequence, in a process known as multiplexing.

A number of open-source software packages exist for computational anal-

ysis once microbial samples are sequenced. Two commonly used programs

are QIIME [3] and mothur [4], which provide automated scripts for each
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step of their bioinformatics pipelines. Raw DNA sequencing data is first

demultiplexed into sample-specific sequences and filtered to remove low-

quality sequences that may inflate diversity estimations or falsely suggest the

presence of novel organisms. Highly similar sequences are grouped into

operational taxonomic units (OTUs), which are compared to reference data-

bases for taxonomic classification and used to calculate within-sample

(alpha) and between-sample (beta) diversity. Statistical tests are used to iden-

tify significant associations between microbiome components and factors of

interest.

General sequencing error, amplification bias introduced by selection of

PCR primers or conditions, and the formation of hybrid sequences known as

chimeras are just a few potential sources of inaccuracy in amplicon-based

FIGURE 4.1 Microbiome study workflow for sample collection, sequencing, and analysis.
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sequencing approaches. Much research has been dedicated to the develop-

ment of computational approaches aimed at reducing or eliminating these

errors. Sequencing of a mock community sample, which contains genomic

DNA from known microorganisms in specified quantities, alongside experi-

mental samples is one way of estimating sequencing error rates.

WHOLE-GENOME SHOTGUN METAGENOMIC SEQUENCING

Whole-genome shotgun metagenomic analysis of microbial communities

circumvents PCR bias by sequencing all DNA associated with an experi-

mental sample and enables assessment of the full genomic coding potential

of bacterial, fungal, and viral community members (Fig. 4.1). In this type

of approach, paired-end libraries are constructed from extracted DNA,

multiplexed, and sequenced on a highly parallelized platform, like the

Illumina HiSeq. Prior to analysis, low-quality sequences and contaminant

human DNA sequences are removed from the dataset. The power of meta-

genomic datasets lies in their ability to not only determine what microbes

make up a community, but also to delve into the functional potential of

these microorganisms. Furthermore, metagenomic sequencing allows for

reconstruction of genomes that may not currently have a reference genome

and are thereby not classified by culturing or 16S rRNA gene sequencing

approaches.

There are many different tools available for identifying the taxonomic

makeup of shotgun metagenomic datasets. MetaPhlAn [5] uses clade-specific

marker genes to estimate relative abundances of different taxa, while

MEGAN [6] relies on BLAST searches of sequences against microbial refer-

ence databases and employs a lowest common ancestor algorithm for classi-

fication. Although unassembled reads are required to calculate frequencies

necessary for sample comparisons, overlapping sequence reads can also be

assembled into contigs that provide more accurate gene annotation and phy-

logeny prediction. Assembly of the various genomes in complex metage-

nomic datasets is challenging. Toolkits, like IDBA-UD [7] and Ray Meta

[8], utilize algorithms to assemble longer contigs with high accuracy. The

functional capacity of the metagenome can be determined by comparing pre-

dicted protein-coding genes, identified by a BLASTX search, to databases

such as the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway

database [9] and/or COG (Clusters of Orthologous Groups of proteins) func-

tional categories database [10].

Metagenomic studies are a computationally intensive undertaking, gener-

ating an extremely large volume of sequence data. Subsequent analysis relies

on incomplete reference databases that are highly biased toward cultivable

organisms and genes with known functions. Thus, development of new meth-

ods for cultivating and isolating different organisms is crucial for construc-

tion of robust references. Once reference genome sequences are available,
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additional obstacles to metagenomic sequencing analysis include the annota-

tion of putative open reading frames and functional classification of hypo-

thetical proteins.

CHARACTERIZING THE HEALTHY HUMAN MICROBIOME

In 2007, the NIH funded the Human Microbiome Project (HMP) and one of

its key objectives was to define the “normal” human adult microbiome

and investigate its role in various diseases [11]. Sampling a cohort of 242

volunteers at 18 diverse sites from five body areas, the HMP found that rela-

tive abundances of metabolic and functional pathways identified from the

metagenomic data were much more stable than organismal abundances mea-

sured by 16S rRNA sequences (Fig. 4.2). Pathogenic organisms were rarely

present in these microbial populations, and, as seen in previous microbiome

studies, intrapersonal variation between body sites of the same subject was

more significant than interpersonal variation between the same body sites of

different subjects [12�16]. Because the communities found at each body

site are highly specialized, the human microbiome can be considered as a

composite of many different microbiomes. In the following sections,

we highlight significant findings from individual studies of the gut, oral cav-

ity, lung, urogenital tract, and skin, focusing on the contributions of the

microbiota to human health.

Gastrointestinal Tract Microbiome

The gut is one of the first and most well-studied human body habitats regard-

ing microbial communities. Fecal samples are commonly collected and used

in microbiome analyses. The MetaHIT (Metagenomics of the Human

Intestinal Tract) Consortium has been a key leader in gut microbiome and

metagenomics research. Their study of 124 Europeans described a “core” gut

metagenome containing genes essential for host�microbe interactions [14].

Analysis of this dataset, in conjunction with others, introduced the idea of

“enterotypes”, or groups of individuals defined by the composition of their

gut microbiota [17]. Three enterotypes were identified, which could not be

explained by nationality, body mass index (BMI), age, or gender. The notion

that the composition of the human gut microbiota may be stratified, and not

continuous, has sparked much debate in the field [18].

Analysis of the human gut virome has drawn attention to the prominence

of bacteriophages, viruses that infect bacteria. Metagenomic sequencing of

viruses colonizing a single adult gut found that almost 80% of the viral com-

munity persisted throughout the 21/2-year study [19]. In addition to viral tem-

poral stability, the study also identified high nucleotide substitution rates in

certain bacteriophage families. The authors suggest that rapid evolution of
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long-term gut residents could give rise to new viral species, which may con-

tribute, in part, to the gut’s high interpersonal variability.

The gut microbiome is known to contribute to a variety of human dis-

eases, including cancer and obesity. Colorectal carcinoma is associated with

increased abundances of Fusobacterium, which is rarely found in the healthy

gut [20,21]. Recent work suggests that this correlation is causal. One study

found that introducing Fusobacterium into mice that develop intestinal

tumors accelerated tumor development and induced a proinflammatory

response [22]. These findings are supported by a second study that identified

a highly conserved Fusobacterium nucleatum virulence factor, adhesion

FadA, as an inducer of oncogenic and inflammatory responses that promote

cancer cell growth [23].

While we do not fully understand human genetic variation associated

with obesity, it has been established that the gut microbiota of obese indivi-

duals is significantly different from microbiota of lean individuals and car-

ries with it a greater capacity for energy harvest [24]. Born and reared in

sterile environments, germ-free mice are not colonized by microorganisms

and are often utilized to determine the effects of microbial changes. One

such study transplanted gut microbes from twins discordant for obesity into

germ-free mice in order to elucidate how interactions between diet and the

gut microbiome influence the human host [25]. Ridaura and colleagues saw

that mice colonized with bacteria from the obese twin had significantly

greater body mass and adiposity than mice colonized with bacteria from the

lean twin. These differences in body composition were correlated with meta-

bolic differences. Cohousing the mice not only prevented weight gain in

mice colonized with bacteria from obese twins, but also caused their meta-

bolic profiles to shift towards the profile of their lean cage mates. These

results were dependent on the diet fed to the mice.

Other studies have similarly shown that diet has a strong influence on gut

microbial communities. Wu and colleagues [26] demonstrated that gut enter-

otypes are strongly correlated with long-term dietary patterns. Gut enterotype

identity was not affected by short-term dietary changes. Rapid shifts in both

gut microbial community structure and gene expression were observed in

volunteers who consumed either an animal- or a plant-based diet for five

consecutive days [27]. The animal-based diet had a greater impact on the gut

microbiome than the plant-based diet and was associated with decreased

levels of Firmicutes, which metabolize plant polysaccharides, and increased

expression of genes for the degradation of polycyclic aromatic hydrocarbons,

compounds produced during the charring of meat.

Significant changes in the gut virome were also observed when the host

was placed on a defined diet and these diet-induced changes co-varied

with changes in the gut bacterial community [28]. Furthermore, the gut

virus populations converged in individuals placed on similar diets. In
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contrast, another study found the gut virome to be stable over time [29].

The source of the differences observed between these two studies is

unknown, however these conflicting results emphasize the need for experi-

mental standardization.

Host genetics has also been shown to influence gut microbial composition

and function [30]. Analysis of fecal samples from monozygotic and dizygotic

twin pairs identified Christensenellaceae as heritable taxa associated with

low BMI. Furthermore, the addition of a Christensenellaceae species to an

obese-associated microbiome reduced weight gain in germ-free mice. The

authors suggest that the species not found to be heritable are more heavily

influenced by environmental factors, such as diet.

Oral Microbiome

Streptococcus dominates the oral cavity, but other abundant genera include

Veillonella, Gamella, Rothia, Fusobacterium, and Neisseria [31,32]. A

recent study that used statistical models to partition human microbiome

data into body-site specific community types identified a significant associ-

ation between gut and oral community types, despite their strong taxo-

nomic differences [33]. One potential explanation for this connection is

that oral bacterial populations seed the gut, thereby giving rise to distinct

gut community types.

The majority of human oral viruses are bacteriophage, individual-

specific, and persist over time [34]. Genome-encoded clustered regularly

interspaced short palindromic repeats (CRISPRs) are a form bacterial

defense mechanism against mobile genetic elements like bacteriophage

and provide a genomic record of phage�bacteria interactions.

Streptococcal CRISPR sequences in the oral cavity revealed great diver-

sity within individuals, suggesting that each individual was exposed to

unique viral populations [35].

The oral microbiome has been linked to both dental caries (cavities)

and periodontitis (gum disease). The complex microbial communities of

caries are taxonomically and functionally different from those colonizing

healthy oral cavities [36]. In periodontitis, Porphyromonas gingivalis is

the suspected etiological agent. Small quantities of this bacterium were

shown to induce changes in the oral microbiota by exploiting the com-

plement cascade to cause periodontal bone loss [37]. Epidemiological

studies have suggested a correlation between periodontitis and atheroscle-

rosis. These two seemingly unrelated diseases may be linked by micro-

biota, as the types and abundance of bacteria in atherosclerotic plaques

correlated with the abundance of those same bacteria in the oral cavity

[38]. These studies indicate the potential utility of the microbiome as a

clinical biomarker.
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Lung Microbiome

Although healthy lungs were once thought to be a sterile environment, recent

studies have characterized the lung microbiome and its associations with dis-

eases such as asthma, chronic obstructive pulmonary diseases, and cystic

fibrosis (CF). The lung microbiome is especially difficult to study because of

its low biomass and the difficulty of sampling only microbiota from the

lower respiratory tract without also picking up carryover microbes from the

upper respiratory tract. Analysis of six healthy human lungs found that

although the lung bacteria were much lower in biomass, they were composi-

tionally similar to bacteria in the upper airways [39].

Infection and bronchiolitis obliterans syndrome are common causes of

death after a lung transplant and can be partially attributed to microbial fac-

tors. Amplicon-based studies of bacterial and fungal communities have

shown that the lungs of transplant subjects are significantly different from

healthy subjects in both composition and diversity [40]. Furthermore, the

lung microbiome of transplant recipients was less similar to their upper

respiratory tract microbial communities and contained lung-enriched bacte-

ria. Longitudinal analysis of lung samples after transplantation also identified

significant differences between healthy and transplanted lungs and found that

a majority of microbes present were transient colonizers [41].

Lung infection and inflammation is the primary cause of death in patients

with CF. As a result, CF lung microbiota have been described at various

stages of the disease. One group studied the lung microbiome of three

stable and three progressing CF patients for over a decade [42]. They found

that the lungs of patients with the progressing disease had decreased micro-

bial diversity, and that antibiotic treatment is a stronger driver of this

decrease in diversity than both age and lung function. A more recent study

analyzing the daily lung microbiome of four subjects over 25 total days

found that bacterial communities remained constant during periods of clini-

cal stability, and microbial shifts were sometimes observed with the onset of

CF respiratory exacerbations [43].

Fungal species have also been detected as important players in CF

lungs, with Candida dominating the relatively stable mycobiome [44]. A

metagenomic pilot study analyzing sputum samples from CF lungs identi-

fied differences in metabolic profiles of three patients with different

responses to antibiotic treatment [45]. Additionally, they identified a reser-

voir of antibiotic resistance genes that may provide insight into microbial

response to treatment.

Urogenital Tract Microbiome

Multiple urogenital diseases, including bacterial vaginosis (BV), yeast infec-

tions, sexually transmitted diseases, urinary tract infections, and human
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immunodeficiency virus (HIV), have been associated with vaginal microbiota.

In reproductive-aged women, vaginal bacterial communities generally fall

into one of five groups, four of which are dominated by Lactobacillus

species. Associated with a greater abundance of anaerobic species and

increased bacterial diversity, the fifth group is also linked to higher vaginal

pH and Nugent scores, both of which are indicators of BV [15]. A longitu-

dinal study indicated that in cases of recurring BV, antibiotic treatments

successfully depleted BV-associated bacteria, but the bacteria returned after

the treatment ended [46]. The paper also noted the dynamic nature of

vaginal microbial communities, finding that Gardnerella vaginalis and

Lactobacillus iners increase in abundance during menstruation, possibly

due to the increased availability of iron from menstrual blood. Another

study collected daily samples from 135 women over 10 weeks [47]. Initial

analysis revealed that vaginal microbiota associated with asymptomatic BV

lacked Lactobacillus species and was comprised of strict anaerobes prior to

symptomatic BV.

While some vaginal communities frequently fluctuate between several of

the five different bacterial profiles, others are more stable [48]. During preg-

nancy, vaginal communities change as a function of gestational age, increas-

ing in Lactobacillus species and decreasing in anaerobic species as

pregnancy progresses [49]. No differences in microbiota were observed

between women who had spontaneous preterm birth and those who delivered

at full term [50].

Microbiota colonizing the male genitourinary tract are not as well stud-

ied, however they are known to play an important role in sexually transmit-

ted infections. In a longitudinal study of the coronal sulcus microbiome of

77 uncircumcised compared to 79 circumcised African males, circumcision

was shown to decrease both bacterial load and overall diversity [51]. In par-

ticular, anaerobic bacteria levels decreased, which the authors hypothesize

may contribute to the reduced risk of HIV acquisition in circumcised males.

Skin Microbiome

The skin is home to a variety of microorganisms, including bacteria, fungi,

viruses, and mites. Studies utilizing 16S rRNA gene sequencing to character-

ize skin microbial communities have found that microenvironment has the

strongest influence on bacterial community composition. Oily microenviron-

ments (such as the back and face) tend to be less diverse and are predomi-

nantly populated by Actinobacteria, whereas dry sites (arms and legs) harbor

Proteobacteria and are typically more diverse [12,13]. Alterations in the

composition and diversity of skin bacterial communities have been linked to

multiple dermatological conditions. Acne is associated with a particularly

virulent strain of Propionibacterium acnes [52], and atopic dermatitis is
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characterized by increased colonization of Staphylococcus aureus and

decreased bacterial diversity [53].

Fungi are known to thrive on the skin and have been implicated in disor-

ders such as toenail infections and athlete’s foot. Fungi colonizing healthy

human skin have been characterized by amplification and sequencing of the

18S rRNA gene and ITS regions. Malassezia species are the predominant

community members of most sampled sites, except for sites on the feet that

were much more fungally diverse [54�56]. Demodex mites, which reside in

facial sebaceous glands and hair follicles, are known to increase in abun-

dance as we age and may play a role in disorders such as rosacea [57�59].

Until recently, whole-metagenome shotgun sequencing of skin microbiota

was impeded by low microbial burden, preventing collection of the large

amounts of DNA required for sequencing, and high quantities of human con-

tamination. Advances in technology have enabled whole-metagenome studies

of the skin, which emphasize the importance of biogeography in both taxo-

nomic composition and functional potential [60]. This first metagenomic

examination of healthy skin also allowed for identification of strain-level

variation in the commensals, Propionibacterium acnes and Staphylococcus

epidermidis, as well as reference-independent analysis of previously unchar-

acterized species.

CONCLUSIONS

Despite the major advances made over the last decade, human microbiome

research is still in its infancy and faces many challenges on the road ahead.

One of these challenges will be dealing with the massive volume of sequenc-

ing data. While increasingly inexpensive DNA sequencing makes generating

data relatively easy, the bioinformatics expertise and computational

resources required to store, process, and analyze this data are expensive and

hard to come by.

Well-designed studies will produce the greatest advances in understand-

ing the human microbiome. Because the human microbiome is an ecosystem,

an important step forward will be integrating strategies and findings from

ecology and environmental microbiology into human studies. Furthermore,

researchers must take care to collect biologically relevant samples with

well-annotated metadata to generate meaningful microbiome datasets.

There are still many unanswered questions regarding the role of the

microbiome in human health. How are commensal microbiota regulated and

maintained? How does the microbiome educate the immune system to distin-

guish between threatening pathogens and nonthreatening commensals? Can

we manipulate the microbiota or the host response to microbiota to treat, or

even prevent, disease? New approaches will be crucial in addressing the

questions above, and functional studies will be required to move beyond

associations of the microbiome with disease to causation.
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